3.1.29 \(\int \frac {\sinh ^6(c+d x)}{a+b \sinh ^2(c+d x)} \, dx\) [29]

Optimal. Leaf size=121 \[ \frac {\left (8 a^2+4 a b+3 b^2\right ) x}{8 b^3}-\frac {a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a-b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a-b} b^3 d}-\frac {(4 a+3 b) \cosh (c+d x) \sinh (c+d x)}{8 b^2 d}+\frac {\cosh (c+d x) \sinh ^3(c+d x)}{4 b d} \]

[Out]

1/8*(8*a^2+4*a*b+3*b^2)*x/b^3-1/8*(4*a+3*b)*cosh(d*x+c)*sinh(d*x+c)/b^2/d+1/4*cosh(d*x+c)*sinh(d*x+c)^3/b/d-a^
(5/2)*arctanh((a-b)^(1/2)*tanh(d*x+c)/a^(1/2))/b^3/d/(a-b)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3266, 481, 592, 536, 212, 214} \begin {gather*} -\frac {a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a-b} \tanh (c+d x)}{\sqrt {a}}\right )}{b^3 d \sqrt {a-b}}+\frac {x \left (8 a^2+4 a b+3 b^2\right )}{8 b^3}-\frac {(4 a+3 b) \sinh (c+d x) \cosh (c+d x)}{8 b^2 d}+\frac {\sinh ^3(c+d x) \cosh (c+d x)}{4 b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sinh[c + d*x]^6/(a + b*Sinh[c + d*x]^2),x]

[Out]

((8*a^2 + 4*a*b + 3*b^2)*x)/(8*b^3) - (a^(5/2)*ArcTanh[(Sqrt[a - b]*Tanh[c + d*x])/Sqrt[a]])/(Sqrt[a - b]*b^3*
d) - ((4*a + 3*b)*Cosh[c + d*x]*Sinh[c + d*x])/(8*b^2*d) + (Cosh[c + d*x]*Sinh[c + d*x]^3)/(4*b*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 481

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-a)*e^(
2*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c - a*d)*(p + 1))), x] + Dist[e^
(2*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1)
+ (a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0]
 && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 536

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 592

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_)), x
_Symbol] :> Simp[g^(n - 1)*(b*e - a*f)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c -
a*d)*(p + 1))), x] - Dist[g^n/(b*n*(b*c - a*d)*(p + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*S
imp[c*(b*e - a*f)*(m - n + 1) + (d*(b*e - a*f)*(m + n*q + 1) - b*n*(c*f - d*e)*(p + 1))*x^n, x], x], x] /; Fre
eQ[{a, b, c, d, e, f, g, q}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, 0]

Rule 3266

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[x^m*((a + (a + b)*ff^2*x^2)^p/(1 + ff^2*x^2)^(m/2 + p +
 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\sinh ^6(c+d x)}{a+b \sinh ^2(c+d x)} \, dx &=\frac {\text {Subst}\left (\int \frac {x^6}{\left (1-x^2\right )^3 \left (a-(a-b) x^2\right )} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac {\cosh (c+d x) \sinh ^3(c+d x)}{4 b d}-\frac {\text {Subst}\left (\int \frac {x^2 \left (3 a+(a+3 b) x^2\right )}{\left (1-x^2\right )^2 \left (a+(-a+b) x^2\right )} \, dx,x,\tanh (c+d x)\right )}{4 b d}\\ &=-\frac {(4 a+3 b) \cosh (c+d x) \sinh (c+d x)}{8 b^2 d}+\frac {\cosh (c+d x) \sinh ^3(c+d x)}{4 b d}-\frac {\text {Subst}\left (\int \frac {-a (4 a+3 b)+\left (-4 a^2-a b-3 b^2\right ) x^2}{\left (1-x^2\right ) \left (a+(-a+b) x^2\right )} \, dx,x,\tanh (c+d x)\right )}{8 b^2 d}\\ &=-\frac {(4 a+3 b) \cosh (c+d x) \sinh (c+d x)}{8 b^2 d}+\frac {\cosh (c+d x) \sinh ^3(c+d x)}{4 b d}-\frac {a^3 \text {Subst}\left (\int \frac {1}{a+(-a+b) x^2} \, dx,x,\tanh (c+d x)\right )}{b^3 d}+\frac {\left (8 a^2+4 a b+3 b^2\right ) \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\tanh (c+d x)\right )}{8 b^3 d}\\ &=\frac {\left (8 a^2+4 a b+3 b^2\right ) x}{8 b^3}-\frac {a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a-b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a-b} b^3 d}-\frac {(4 a+3 b) \cosh (c+d x) \sinh (c+d x)}{8 b^2 d}+\frac {\cosh (c+d x) \sinh ^3(c+d x)}{4 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.32, size = 97, normalized size = 0.80 \begin {gather*} \frac {4 \left (8 a^2+4 a b+3 b^2\right ) (c+d x)-\frac {32 a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a-b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a-b}}-8 b (a+b) \sinh (2 (c+d x))+b^2 \sinh (4 (c+d x))}{32 b^3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sinh[c + d*x]^6/(a + b*Sinh[c + d*x]^2),x]

[Out]

(4*(8*a^2 + 4*a*b + 3*b^2)*(c + d*x) - (32*a^(5/2)*ArcTanh[(Sqrt[a - b]*Tanh[c + d*x])/Sqrt[a]])/Sqrt[a - b] -
 8*b*(a + b)*Sinh[2*(c + d*x)] + b^2*Sinh[4*(c + d*x)])/(32*b^3*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(416\) vs. \(2(107)=214\).
time = 1.26, size = 417, normalized size = 3.45

method result size
risch \(\frac {x \,a^{2}}{b^{3}}+\frac {a x}{2 b^{2}}+\frac {3 x}{8 b}+\frac {{\mathrm e}^{4 d x +4 c}}{64 b d}-\frac {a \,{\mathrm e}^{2 d x +2 c}}{8 b^{2} d}-\frac {{\mathrm e}^{2 d x +2 c}}{8 b d}+\frac {a \,{\mathrm e}^{-2 d x -2 c}}{8 b^{2} d}+\frac {{\mathrm e}^{-2 d x -2 c}}{8 b d}-\frac {{\mathrm e}^{-4 d x -4 c}}{64 b d}+\frac {\sqrt {a \left (a -b \right )}\, a^{2} \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {a \left (a -b \right )}+2 a -b}{b}\right )}{2 \left (a -b \right ) d \,b^{3}}-\frac {\sqrt {a \left (a -b \right )}\, a^{2} \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {a \left (a -b \right )}-2 a +b}{b}\right )}{2 \left (a -b \right ) d \,b^{3}}\) \(246\)
derivativedivides \(\frac {\frac {1}{4 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4}}+\frac {1}{2 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {4 a +b}{8 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {4 a +3 b}{8 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (-8 a^{2}-4 a b -3 b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 b^{3}}-\frac {1}{4 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}+\frac {1}{2 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {-4 a -b}{8 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {4 a +3 b}{8 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (8 a^{2}+4 a b +3 b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 b^{3}}+\frac {2 a^{4} \left (\frac {\left (\sqrt {-b \left (a -b \right )}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}\right )}{2 a \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}-\frac {\left (\sqrt {-b \left (a -b \right )}-b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right )}{2 a \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right )}{b^{3}}}{d}\) \(417\)
default \(\frac {\frac {1}{4 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4}}+\frac {1}{2 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {4 a +b}{8 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {4 a +3 b}{8 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (-8 a^{2}-4 a b -3 b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 b^{3}}-\frac {1}{4 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}+\frac {1}{2 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {-4 a -b}{8 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {4 a +3 b}{8 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (8 a^{2}+4 a b +3 b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 b^{3}}+\frac {2 a^{4} \left (\frac {\left (\sqrt {-b \left (a -b \right )}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}\right )}{2 a \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}-\frac {\left (\sqrt {-b \left (a -b \right )}-b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right )}{2 a \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right )}{b^{3}}}{d}\) \(417\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(d*x+c)^6/(a+b*sinh(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

1/d*(1/4/b/(tanh(1/2*d*x+1/2*c)-1)^4+1/2/b/(tanh(1/2*d*x+1/2*c)-1)^3-1/8*(4*a+b)/b^2/(tanh(1/2*d*x+1/2*c)-1)^2
-1/8*(4*a+3*b)/b^2/(tanh(1/2*d*x+1/2*c)-1)+1/8/b^3*(-8*a^2-4*a*b-3*b^2)*ln(tanh(1/2*d*x+1/2*c)-1)-1/4/b/(tanh(
1/2*d*x+1/2*c)+1)^4+1/2/b/(tanh(1/2*d*x+1/2*c)+1)^3-1/8*(-4*a-b)/b^2/(tanh(1/2*d*x+1/2*c)+1)^2-1/8*(4*a+3*b)/b
^2/(tanh(1/2*d*x+1/2*c)+1)+1/8*(8*a^2+4*a*b+3*b^2)/b^3*ln(tanh(1/2*d*x+1/2*c)+1)+2*a^4/b^3*(1/2*((-b*(a-b))^(1
/2)+b)/a/(-b*(a-b))^(1/2)/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/
2)-a+2*b)*a)^(1/2))-1/2*((-b*(a-b))^(1/2)-b)/a/(-b*(a-b))^(1/2)/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2)*arctanh(a
*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2))))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)^6/(a+b*sinh(d*x+c)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b-a>0)', see `assume?` for mor
e details)Is

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 716 vs. \(2 (107) = 214\).
time = 0.49, size = 1725, normalized size = 14.26 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)^6/(a+b*sinh(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/64*(b^2*cosh(d*x + c)^8 + 8*b^2*cosh(d*x + c)*sinh(d*x + c)^7 + b^2*sinh(d*x + c)^8 + 8*(8*a^2 + 4*a*b + 3*
b^2)*d*x*cosh(d*x + c)^4 - 8*(a*b + b^2)*cosh(d*x + c)^6 + 4*(7*b^2*cosh(d*x + c)^2 - 2*a*b - 2*b^2)*sinh(d*x
+ c)^6 + 8*(7*b^2*cosh(d*x + c)^3 - 6*(a*b + b^2)*cosh(d*x + c))*sinh(d*x + c)^5 + 2*(35*b^2*cosh(d*x + c)^4 +
 4*(8*a^2 + 4*a*b + 3*b^2)*d*x - 60*(a*b + b^2)*cosh(d*x + c)^2)*sinh(d*x + c)^4 + 8*(7*b^2*cosh(d*x + c)^5 +
4*(8*a^2 + 4*a*b + 3*b^2)*d*x*cosh(d*x + c) - 20*(a*b + b^2)*cosh(d*x + c)^3)*sinh(d*x + c)^3 + 8*(a*b + b^2)*
cosh(d*x + c)^2 + 4*(7*b^2*cosh(d*x + c)^6 + 12*(8*a^2 + 4*a*b + 3*b^2)*d*x*cosh(d*x + c)^2 - 30*(a*b + b^2)*c
osh(d*x + c)^4 + 2*a*b + 2*b^2)*sinh(d*x + c)^2 + 32*(a^2*cosh(d*x + c)^4 + 4*a^2*cosh(d*x + c)^3*sinh(d*x + c
) + 6*a^2*cosh(d*x + c)^2*sinh(d*x + c)^2 + 4*a^2*cosh(d*x + c)*sinh(d*x + c)^3 + a^2*sinh(d*x + c)^4)*sqrt(a/
(a - b))*log((b^2*cosh(d*x + c)^4 + 4*b^2*cosh(d*x + c)*sinh(d*x + c)^3 + b^2*sinh(d*x + c)^4 + 2*(2*a*b - b^2
)*cosh(d*x + c)^2 + 2*(3*b^2*cosh(d*x + c)^2 + 2*a*b - b^2)*sinh(d*x + c)^2 + 8*a^2 - 8*a*b + b^2 + 4*(b^2*cos
h(d*x + c)^3 + (2*a*b - b^2)*cosh(d*x + c))*sinh(d*x + c) + 4*((a*b - b^2)*cosh(d*x + c)^2 + 2*(a*b - b^2)*cos
h(d*x + c)*sinh(d*x + c) + (a*b - b^2)*sinh(d*x + c)^2 + 2*a^2 - 3*a*b + b^2)*sqrt(a/(a - b)))/(b*cosh(d*x + c
)^4 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 + 2*(2*a - b)*cosh(d*x + c)^2 + 2*(3*b*cosh(d*x +
c)^2 + 2*a - b)*sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^3 + (2*a - b)*cosh(d*x + c))*sinh(d*x + c) + b)) - b^2 +
8*(b^2*cosh(d*x + c)^7 + 4*(8*a^2 + 4*a*b + 3*b^2)*d*x*cosh(d*x + c)^3 - 6*(a*b + b^2)*cosh(d*x + c)^5 + 2*(a*
b + b^2)*cosh(d*x + c))*sinh(d*x + c))/(b^3*d*cosh(d*x + c)^4 + 4*b^3*d*cosh(d*x + c)^3*sinh(d*x + c) + 6*b^3*
d*cosh(d*x + c)^2*sinh(d*x + c)^2 + 4*b^3*d*cosh(d*x + c)*sinh(d*x + c)^3 + b^3*d*sinh(d*x + c)^4), 1/64*(b^2*
cosh(d*x + c)^8 + 8*b^2*cosh(d*x + c)*sinh(d*x + c)^7 + b^2*sinh(d*x + c)^8 + 8*(8*a^2 + 4*a*b + 3*b^2)*d*x*co
sh(d*x + c)^4 - 8*(a*b + b^2)*cosh(d*x + c)^6 + 4*(7*b^2*cosh(d*x + c)^2 - 2*a*b - 2*b^2)*sinh(d*x + c)^6 + 8*
(7*b^2*cosh(d*x + c)^3 - 6*(a*b + b^2)*cosh(d*x + c))*sinh(d*x + c)^5 + 2*(35*b^2*cosh(d*x + c)^4 + 4*(8*a^2 +
 4*a*b + 3*b^2)*d*x - 60*(a*b + b^2)*cosh(d*x + c)^2)*sinh(d*x + c)^4 + 8*(7*b^2*cosh(d*x + c)^5 + 4*(8*a^2 +
4*a*b + 3*b^2)*d*x*cosh(d*x + c) - 20*(a*b + b^2)*cosh(d*x + c)^3)*sinh(d*x + c)^3 + 8*(a*b + b^2)*cosh(d*x +
c)^2 + 4*(7*b^2*cosh(d*x + c)^6 + 12*(8*a^2 + 4*a*b + 3*b^2)*d*x*cosh(d*x + c)^2 - 30*(a*b + b^2)*cosh(d*x + c
)^4 + 2*a*b + 2*b^2)*sinh(d*x + c)^2 - 64*(a^2*cosh(d*x + c)^4 + 4*a^2*cosh(d*x + c)^3*sinh(d*x + c) + 6*a^2*c
osh(d*x + c)^2*sinh(d*x + c)^2 + 4*a^2*cosh(d*x + c)*sinh(d*x + c)^3 + a^2*sinh(d*x + c)^4)*sqrt(-a/(a - b))*a
rctan(1/2*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 + 2*a - b)*sqrt(-a/(a - b))
/a) - b^2 + 8*(b^2*cosh(d*x + c)^7 + 4*(8*a^2 + 4*a*b + 3*b^2)*d*x*cosh(d*x + c)^3 - 6*(a*b + b^2)*cosh(d*x +
c)^5 + 2*(a*b + b^2)*cosh(d*x + c))*sinh(d*x + c))/(b^3*d*cosh(d*x + c)^4 + 4*b^3*d*cosh(d*x + c)^3*sinh(d*x +
 c) + 6*b^3*d*cosh(d*x + c)^2*sinh(d*x + c)^2 + 4*b^3*d*cosh(d*x + c)*sinh(d*x + c)^3 + b^3*d*sinh(d*x + c)^4)
]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)**6/(a+b*sinh(d*x+c)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 2.68, size = 208, normalized size = 1.72 \begin {gather*} -\frac {\frac {64 \, a^{3} \arctan \left (\frac {b e^{\left (2 \, d x + 2 \, c\right )} + 2 \, a - b}{2 \, \sqrt {-a^{2} + a b}}\right )}{\sqrt {-a^{2} + a b} b^{3}} - \frac {8 \, {\left (8 \, a^{2} + 4 \, a b + 3 \, b^{2}\right )} {\left (d x + c\right )}}{b^{3}} - \frac {b e^{\left (4 \, d x + 4 \, c\right )} - 8 \, a e^{\left (2 \, d x + 2 \, c\right )} - 8 \, b e^{\left (2 \, d x + 2 \, c\right )}}{b^{2}} + \frac {{\left (48 \, a^{2} e^{\left (4 \, d x + 4 \, c\right )} + 24 \, a b e^{\left (4 \, d x + 4 \, c\right )} + 18 \, b^{2} e^{\left (4 \, d x + 4 \, c\right )} - 8 \, a b e^{\left (2 \, d x + 2 \, c\right )} - 8 \, b^{2} e^{\left (2 \, d x + 2 \, c\right )} + b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )}}{b^{3}}}{64 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)^6/(a+b*sinh(d*x+c)^2),x, algorithm="giac")

[Out]

-1/64*(64*a^3*arctan(1/2*(b*e^(2*d*x + 2*c) + 2*a - b)/sqrt(-a^2 + a*b))/(sqrt(-a^2 + a*b)*b^3) - 8*(8*a^2 + 4
*a*b + 3*b^2)*(d*x + c)/b^3 - (b*e^(4*d*x + 4*c) - 8*a*e^(2*d*x + 2*c) - 8*b*e^(2*d*x + 2*c))/b^2 + (48*a^2*e^
(4*d*x + 4*c) + 24*a*b*e^(4*d*x + 4*c) + 18*b^2*e^(4*d*x + 4*c) - 8*a*b*e^(2*d*x + 2*c) - 8*b^2*e^(2*d*x + 2*c
) + b^2)*e^(-4*d*x - 4*c)/b^3)/d

________________________________________________________________________________________

Mupad [B]
time = 1.07, size = 266, normalized size = 2.20 \begin {gather*} \frac {x\,\left (8\,a^2+4\,a\,b+3\,b^2\right )}{8\,b^3}-\frac {{\mathrm {e}}^{-4\,c-4\,d\,x}}{64\,b\,d}+\frac {{\mathrm {e}}^{4\,c+4\,d\,x}}{64\,b\,d}+\frac {{\mathrm {e}}^{-2\,c-2\,d\,x}\,\left (a+b\right )}{8\,b^2\,d}-\frac {{\mathrm {e}}^{2\,c+2\,d\,x}\,\left (a+b\right )}{8\,b^2\,d}+\frac {a^{5/2}\,\ln \left (\frac {4\,a^3\,{\mathrm {e}}^{2\,c+2\,d\,x}}{b^4}-\frac {2\,a^{5/2}\,\left (b\,d+2\,a\,d\,{\mathrm {e}}^{2\,c+2\,d\,x}-b\,d\,{\mathrm {e}}^{2\,c+2\,d\,x}\right )}{b^4\,d\,\sqrt {a-b}}\right )}{2\,b^3\,d\,\sqrt {a-b}}-\frac {a^{5/2}\,\ln \left (\frac {4\,a^3\,{\mathrm {e}}^{2\,c+2\,d\,x}}{b^4}+\frac {2\,a^{5/2}\,\left (b\,d+2\,a\,d\,{\mathrm {e}}^{2\,c+2\,d\,x}-b\,d\,{\mathrm {e}}^{2\,c+2\,d\,x}\right )}{b^4\,d\,\sqrt {a-b}}\right )}{2\,b^3\,d\,\sqrt {a-b}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(c + d*x)^6/(a + b*sinh(c + d*x)^2),x)

[Out]

(x*(4*a*b + 8*a^2 + 3*b^2))/(8*b^3) - exp(- 4*c - 4*d*x)/(64*b*d) + exp(4*c + 4*d*x)/(64*b*d) + (exp(- 2*c - 2
*d*x)*(a + b))/(8*b^2*d) - (exp(2*c + 2*d*x)*(a + b))/(8*b^2*d) + (a^(5/2)*log((4*a^3*exp(2*c + 2*d*x))/b^4 -
(2*a^(5/2)*(b*d + 2*a*d*exp(2*c + 2*d*x) - b*d*exp(2*c + 2*d*x)))/(b^4*d*(a - b)^(1/2))))/(2*b^3*d*(a - b)^(1/
2)) - (a^(5/2)*log((4*a^3*exp(2*c + 2*d*x))/b^4 + (2*a^(5/2)*(b*d + 2*a*d*exp(2*c + 2*d*x) - b*d*exp(2*c + 2*d
*x)))/(b^4*d*(a - b)^(1/2))))/(2*b^3*d*(a - b)^(1/2))

________________________________________________________________________________________